Source code for eta_utility.eta_x.config

from __future__ import annotations

import importlib
import itertools
import pathlib
from logging import getLogger
from typing import TYPE_CHECKING

from attrs import Factory, converters, define, field, fields, validators
from typing_extensions import deprecated

from eta_utility import deep_mapping_update, dict_pop_any, json_import
from eta_utility.util import toml_import, yaml_import

if TYPE_CHECKING:
    from collections.abc import Mapping
    from typing import Any

    from attrs import Attribute
    from stable_baselines3.common.base_class import BaseAlgorithm, BasePolicy
    from stable_baselines3.common.vec_env import DummyVecEnv

    from eta_utility.eta_x.envs import BaseEnv
    from eta_utility.type_hints import Path


log = getLogger(__name__)


def _path_converter(path: Path) -> pathlib.Path:
    """Convert value to a class."""
    return pathlib.Path(path) if not isinstance(path, pathlib.Path) else path


def _get_class(instance: ConfigOptSetup, attrib: Attribute, new_value: str | None) -> str | None:
    """Find module and class name and import the specified class."""
    if new_value is not None:
        module, cls_name = new_value.rsplit(".", 1)
        try:
            cls = getattr(importlib.import_module(module), cls_name)
        except ModuleNotFoundError as e:
            raise ModuleNotFoundError(
                f"Could not find module '{e.name}'. While importing class '{cls_name}' from '{attrib.name}' value."
            ) from e
        except AttributeError as e:
            raise AttributeError(
                f"Could not find class '{cls_name}' in module '{module}'. "
                f"While importing class '{cls_name}' from '{attrib.name}' value."
            ) from e

        cls_attr_name = f"{attrib.name.rsplit('_', 1)[0]}_class"
        setattr(instance, cls_attr_name, cls)

    return new_value


[docs] @define(frozen=False, kw_only=True) class ConfigOpt: """Configuration for the optimization, which can be loaded from a JSON file.""" #: Name of the configuration used for the series of run. config_name: str = field(validator=validators.instance_of(str)) #: Root path for the optimization run (scenarios and results are relative to this). path_root: pathlib.Path = field(converter=_path_converter) #: Relative path to the results folder. relpath_results: str = field(validator=validators.instance_of(str)) #: relative path to the scenarios folder (default: None). relpath_scenarios: str | None = field(validator=validators.optional(validators.instance_of(str)), default=None) #: Path to the results folder. path_results: pathlib.Path = field(init=False, converter=_path_converter) #: Path to the scenarios folder (default: None). path_scenarios: pathlib.Path | None = field( init=False, converter=converters.optional(_path_converter), default=None ) #: Optimization run setup. setup: ConfigOptSetup = field() #: Optimization run settings. settings: ConfigOptSettings = field() def __attrs_post_init__(self) -> None: object.__setattr__(self, "path_results", self.path_root / self.relpath_results) if self.relpath_scenarios is not None: object.__setattr__(self, "path_scenarios", self.path_root / self.relpath_scenarios)
[docs] @classmethod @deprecated("Use `ConfigOpt.from_config_file()` instead.") def from_json(cls, file: Path, path_root: Path, overwrite: Mapping[str, Any] | None = None) -> ConfigOpt: return cls.from_config_file(file=file, path_root=path_root, overwrite=overwrite)
[docs] @classmethod def from_config_file(cls, file: Path, path_root: Path, overwrite: Mapping[str, Any] | None = None) -> ConfigOpt: """Load configuration from JSON/TOML/YAML file, which consists of the following sections: - **paths**: In this section, the (relative) file paths for results and scenarios are specified. The paths are deserialized directly into the :class:`ConfigOpt` object. - **setup**: This section specifies which classes and utilities should be used for optimization. The setup configuration is deserialized into the :class:`ConfigOptSetup` object. - **settings**: The settings section contains basic parameters for the optimization, it is deserialized into a :class:`ConfigOptSettings` object. - **environment_specific**: The environment section contains keyword arguments for the environment. This section must contain values for the arguments of the environment, the expected values are therefore different depending on the environment and not fully documented here. - **agent_specific**: The agent section contains keyword arguments for the control algorithm (agent). This section must contain values for the arguments of the agent, the expected values are therefore different depending on the agent and not fully documented here. :param file: Path to the configuration file. :param overwrite: Config parameters to overwrite. :return: ConfigOpt object. """ _path_root: pathlib.Path = pathlib.Path(path_root) config = cls._load_config_file(file) if overwrite is not None: config = dict(deep_mapping_update(config, overwrite)) # Ensure all required sections are present in configuration for section in ("setup", "settings", "paths"): if section not in config: raise ValueError(f"The section '{section}' is not present in configuration file {file}.") return ConfigOpt.from_dict(config, file, _path_root)
@staticmethod def _load_config_file(file: Path) -> dict[str, Any]: """Load configuration file from JSON, TOML, or YAML file. The read file is expected to contain a dictionary of configuration options. :param file: Path to the configuration file. :return: Dictionary of configuration options. """ possible_extensions = {".json": json_import, ".toml": toml_import, ".yml": yaml_import, ".yaml": yaml_import} file_path = pathlib.Path(file) for extension in possible_extensions: _file_path: pathlib.Path = file_path.with_suffix(extension) if _file_path.exists(): result = possible_extensions[extension](_file_path) break else: raise FileNotFoundError(f"Config file not found: {file}") if not isinstance(result, dict): raise TypeError(f"Config file {file} must define a dictionary of options.") return result
[docs] @classmethod def from_dict(cls, config: dict[str, Any], file: Path, path_root: pathlib.Path) -> ConfigOpt: """Build a ConfigOpt object from a dictionary of configuration options. :param config: Dictionary of configuration options. :param file: Path to the configuration file. :param path_root: Root path for the optimization configuration run. :return: ConfigOpt object. """ def _pop_dict(dikt: dict[str, Any], key: str) -> dict[str, Any]: val = dikt.pop(key) if not isinstance(val, dict): raise TypeError(f"'{key}' section must be a dictionary of settings.") return val if "environment_specific" not in config: config["environment_specific"] = {} log.info("Section 'environment_specific' not present in configuration, assuming it is empty.") if "agent_specific" not in config: config["agent_specific"] = {} log.info("Section 'agent_specific' not present in configuration, assuming it is empty.") # Load values from paths section errors = False paths = _pop_dict(config, "paths") if "relpath_results" not in paths: log.error("'relpath_results' is required and could not be found in section 'paths' of the configuration.") errors = True relpath_results = paths.pop("relpath_results", None) relpath_scenarios = paths.pop("relpath_scenarios", None) # Setup section _setup = _pop_dict(config, "setup") try: setup = ConfigOptSetup.from_dict(_setup) except ValueError as e: log.error(e) errors = True # Settings section settings_raw: dict[str, dict[str, Any]] = {} settings_raw["settings"] = _pop_dict(config, "settings") settings_raw["environment_specific"] = _pop_dict(config, "environment_specific") if "interaction_env_specific" in config: settings_raw["interaction_env_specific"] = _pop_dict(config, "interaction_env_specific") elif "interaction_environment_specific" in config: settings_raw["interaction_env_specific"] = _pop_dict(config, "interaction_environment_specific") settings_raw["agent_specific"] = _pop_dict(config, "agent_specific") try: settings = ConfigOptSettings.from_dict(settings_raw) except ValueError as e: log.error(e) errors = True # Log configuration values which were not recognized. for name in config: log.warning( f"Specified configuration value '{name}' in the setup section of the configuration was not " f"recognized and is ignored." ) if errors: raise ValueError( "Not all required values were found in setup section (see log). Could not load config file." ) return cls( config_name=str(file), path_root=path_root, relpath_results=relpath_results, relpath_scenarios=relpath_scenarios, setup=setup, settings=settings, )
def __getitem__(self, name: str) -> Any: return getattr(self, name) def __setitem__(self, name: str, value: Any) -> None: if not hasattr(self, name): raise KeyError(f"The key {name} does not exist - it cannot be set.") setattr(self, name, value)
[docs] @define(frozen=False, kw_only=True) class ConfigOptSetup: """Configuration options as specified in the "setup" section of the configuration file.""" #: Import description string for the agent class. agent_import: str = field(on_setattr=_get_class) #: Agent class (automatically determined from agent_import). agent_class: type[BaseAlgorithm] = field(init=False) #: Import description string for the environment class. environment_import: str = field(on_setattr=_get_class) #: Imported Environment class (automatically determined from environment_import). environment_class: type[BaseEnv] = field(init=False) #: Import description string for the interaction environment (default: None). interaction_env_import: str | None = field(default=None, on_setattr=_get_class) #: Interaction environment class (default: None) (automatically determined from interaction_env_import). interaction_env_class: type[BaseEnv] | None = field(init=False, default=None) #: Import description string for the environment vectorizer #: (default: stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv). vectorizer_import: str = field( default="stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv", on_setattr=_get_class, converter=converters.default_if_none( # type: ignore "stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv" ), ) # mypy currently does not recognize converters.default_if_none #: Environment vectorizer class (automatically determined from vectorizer_import). vectorizer_class: type[DummyVecEnv] = field(init=False) #: Import description string for the policy class (default: eta_utility.eta_x.agents.common.NoPolicy). policy_import: str = field( default="eta_utility.eta_x.common.NoPolicy", on_setattr=_get_class, converter=converters.default_if_none("eta_utility.eta_x.common.NoPolicy"), # type: ignore ) # mypy currently does not recognize converters.default_if_none #: Policy class (automatically determined from policy_import). policy_class: type[BasePolicy] = field(init=False) #: Flag which is true if the environment should be wrapped for monitoring (default: False). monitor_wrapper: bool = field(default=False, converter=bool) #: Flag which is true if the observations should be normalized (default: False). norm_wrapper_obs: bool = field(default=False, converter=bool) #: Flag which is true if the rewards should be normalized (default: False). norm_wrapper_reward: bool = field(default=False, converter=bool) #: Flag to enable tensorboard logging (default: False). tensorboard_log: bool = field(default=False, converter=bool) def __attrs_post_init__(self) -> None: _fields = fields(ConfigOptSetup) _get_class(self, _fields.agent_import, self.agent_import) _get_class(self, _fields.environment_import, self.environment_import) _get_class(self, _fields.interaction_env_import, self.interaction_env_import) _get_class(self, _fields.vectorizer_import, self.vectorizer_import) _get_class(self, _fields.policy_import, self.policy_import)
[docs] @classmethod def from_dict(cls, dikt: dict[str, Any]) -> ConfigOptSetup: errors = [] def get_import(name: str, required: bool = False) -> str | Any: """Get import string or combination of package and class name from dictionary. :param name: Name of the configuration value. :param required: Flag to determine if the value is required. """ nonlocal errors, dikt import_value = dikt.pop(f"{name}_import", None) package_value = dikt.pop(f"{name}_package", None) class_value = dikt.pop(f"{name}_class", None) # Check import if import_value is not None: return import_value # Check package and class if package_value is not None and class_value is not None: return f"{package_value}.{class_value}" # If only one of package and class is specified, raise error if (package_value is None) ^ (class_value is None): msg = f"Only one of '{name}_package' and '{name}_class' is specified." log.info(msg) # Raise error if required value is missing if required: msg = f"'{name}_import' or both of '{name}_package' and '{name}_class' parameters must be specified." log.error(msg) errors.append(name) return None agent_import = get_import("agent", required=True) environment_import = get_import("environment", required=True) interaction_env_import = get_import("interaction_env") vectorizer_import = get_import("vectorizer") policy_import = get_import("policy") monitor_wrapper = dikt.pop("monitor_wrapper", None) norm_wrapper_obs = dikt.pop("norm_wrapper_obs", None) norm_wrapper_reward = dikt.pop("norm_wrapper_reward", None) tensorboard_log = dikt.pop("tensorboard_log", None) # Log configuration values which were not recognized. if dikt: msg = "Following values were not recognized in the config setup section and are ignored: " msg += ", ".join(dikt.keys()) log.warning(msg) if errors: msg = "Not all required values were found in setup section (see log). Could not load config file. " msg += f"Missing values: {', '.join(errors)}" raise ValueError(msg) return ConfigOptSetup( agent_import=agent_import, environment_import=environment_import, interaction_env_import=interaction_env_import, vectorizer_import=vectorizer_import, policy_import=policy_import, monitor_wrapper=monitor_wrapper, norm_wrapper_obs=norm_wrapper_obs, norm_wrapper_reward=norm_wrapper_reward, tensorboard_log=tensorboard_log, )
def __getitem__(self, name: str) -> Any: return getattr(self, name) def __setitem__(self, name: str, value: Any) -> None: if not hasattr(self, name): raise KeyError(f"The key {name} does not exist - it cannot be set.") setattr(self, name, value)
def _env_defaults(instance: ConfigOptSettings, attrib: Attribute, new_value: dict[str, Any] | None) -> dict[str, Any]: """Set default values for the environment settings.""" _new_value = {} if new_value is None else new_value _new_value.setdefault("verbose", instance.verbose) _new_value.setdefault("sampling_time", instance.sampling_time) _new_value.setdefault("episode_duration", instance.episode_duration) if instance.sim_steps_per_sample is not None: _new_value.setdefault("sim_steps_per_sample", instance.sim_steps_per_sample) return _new_value def _agent_defaults(instance: ConfigOptSettings, attrib: Attribute, new_value: dict[str, Any] | None) -> dict[str, Any]: """Set default values for the environment settings.""" _new_value = {} if new_value is None else new_value _new_value.setdefault("seed", instance.seed) _new_value.setdefault("verbose", instance.verbose) return _new_value
[docs] @define(frozen=False, kw_only=True) class ConfigOptSettings: #: Seed for random sampling (default: None). seed: int | None = field(default=None, converter=converters.optional(int)) #: Logging verbosity of the framework (default: 2). verbose: int = field( default=2, converter=converters.pipe(converters.default_if_none(2), int), # type: ignore ) # mypy currently does not recognize converters.default_if_none #: Number of vectorized environments to instantiate (if not using DummyVecEnv) (default: 1). n_environments: int = field( default=1, converter=converters.pipe(converters.default_if_none(1), int), # type: ignore ) # mypy currently does not recognize converters.default_if_none #: Number of episodes to execute when the agent is playing (default: None). n_episodes_play: int | None = field(default=None, converter=converters.optional(int)) #: Number of episodes to execute when the agent is learning (default: None). n_episodes_learn: int | None = field(default=None, converter=converters.optional(int)) #: Flag to determine whether the interaction env is used or not (default: False). interact_with_env: bool = field( default=False, converter=converters.pipe(converters.default_if_none(False), bool), # type: ignore ) # mypy currently does not recognize converters.default_if_none #: How often to save the model during training (default: 10 - after every ten episodes). save_model_every_x_episodes: int = field( default=10, converter=converters.pipe(converters.default_if_none(1), int), # type: ignore ) # mypy currently does not recognize converters.default_if_none #: How many episodes to pass between each render call (default: 10 - after every ten episodes). plot_interval: int = field( default=10, converter=converters.pipe(converters.default_if_none(1), int), # type: ignore ) # mypy currently does not recognize converters.default_if_none #: Duration of an episode in seconds (can be a float value). episode_duration: float = field(converter=float) #: Duration between time samples in seconds (can be a float value). sampling_time: float = field(converter=float) #: Simulation steps for every sample. sim_steps_per_sample: int | None = field(default=None, converter=converters.optional(int)) #: Multiplier for scaling the agent actions before passing them to the environment #: (especially useful with interaction environments) (default: None). scale_actions: float | None = field(default=None, converter=converters.optional(float)) #: Number of digits to round actions to before passing them to the environment #: (especially useful with interaction environments) (default: None). round_actions: int | None = field(default=None, converter=converters.optional(int)) #: Settings dictionary for the environment. environment: dict[str, Any] = field( default=Factory(dict), converter=converters.default_if_none(Factory(dict)), # type: ignore on_setattr=_env_defaults, ) # mypy currently does not recognize converters.default_if_none #: Settings dictionary for the interaction environment (default: None). interaction_env: dict[str, Any] | None = field(default=None, on_setattr=_env_defaults) #: Settings dictionary for the agent. agent: dict[str, Any] = field( default=Factory(dict), converter=converters.default_if_none(Factory(dict)), # type: ignore # mypy currently does not recognize converters.default_if_none on_setattr=_agent_defaults, ) #: Flag which is true if the log output should be written to a file log_to_file: bool = field( default=True, converter=converters.pipe(converters.default_if_none(False), bool), # type: ignore ) def __attrs_post_init__(self) -> None: _fields = fields(ConfigOptSettings) _env_defaults(self, _fields.environment, self.environment) _agent_defaults(self, _fields.agent, self.agent) # Set standards for interaction env settings or copy settings from environment if self.interaction_env is not None: _env_defaults(self, _fields.interaction_env, self.interaction_env) elif self.interact_with_env is True and self.interaction_env is None: log.warning( "Interaction with an environment has been requested, but no section 'interaction_env_specific' " "found in settings. Re-using 'environment_specific' section." ) self.interaction_env = self.environment if self.n_episodes_play is None and self.n_episodes_learn is None: raise ValueError("At least one of 'n_episodes_play' or 'n_episodes_learn' must be specified in settings.")
[docs] @classmethod def from_dict(cls, dikt: dict[str, dict[str, Any]]) -> ConfigOptSettings: errors = False # Read general settings dictionary if "settings" not in dikt: raise ValueError("Settings section not found in configuration. Cannot import config file.") settings = dikt.pop("settings") if "seed" not in settings: log.info("'seed' not specified in settings, using default value 'None'") seed = settings.pop("seed", None) if "verbose" not in settings and "verbosity" not in settings: log.info("'verbose' or 'verbosity' not specified in settings, using default value '2'") verbose = dict_pop_any(settings, "verbose", "verbosity", fail=False, default=None) if "n_environments" not in settings: log.info("'n_environments' not specified in settings, using default value '1'") n_environments = settings.pop("n_environments", None) if "n_episodes_play" not in settings and "n_episodes_learn" not in settings: log.error("Neither 'n_episodes_play' nor 'n_episodes_learn' is specified in settings.") errors = True n_epsiodes_play = settings.pop("n_episodes_play", None) n_episodes_learn = settings.pop("n_episodes_learn", None) interact_with_env = settings.pop("interact_with_env", False) save_model_every_x_episodes = settings.pop("save_model_every_x_episodes", None) plot_interval = settings.pop("plot_interval", None) if "episode_duration" not in settings: log.error("'episode_duration' is not specified in settings.") errors = True episode_duration = settings.pop("episode_duration", None) if "sampling_time" not in settings: log.error("'sampling_time' is not specified in settings.") errors = True sampling_time = settings.pop("sampling_time", None) sim_steps_per_sample = settings.pop("sim_steps_per_sample", None) scale_actions = dict_pop_any(settings, "scale_interaction_actions", "scale_actions", fail=False, default=None) round_actions = dict_pop_any(settings, "round_interaction_actions", "round_actions", fail=False, default=None) if "environment_specific" not in dikt: log.error("'environment_specific' section not defined in settings.") errors = True environment = dikt.pop("environment_specific", None) if "agent_specific" not in dikt: log.error("'agent_specific' section not defined in settings.") errors = True agent = dikt.pop("agent_specific", None) interaction_env = dict_pop_any( dikt, "interaction_env_specific", "interaction_environment_specific", fail=False, default=None ) log_to_file = settings.pop("log_to_file", False) # Log configuration values which were not recognized. for name in itertools.chain(settings, dikt): log.warning( f"Specified configuration value '{name}' in the settings section of the configuration " f"was not recognized and is ignored." ) if errors: raise ValueError("Not all required values were found in settings (see log). Could not load config file.") return cls( seed=seed, verbose=verbose, n_environments=n_environments, n_episodes_play=n_epsiodes_play, n_episodes_learn=n_episodes_learn, interact_with_env=interact_with_env, save_model_every_x_episodes=save_model_every_x_episodes, plot_interval=plot_interval, episode_duration=episode_duration, sampling_time=sampling_time, sim_steps_per_sample=sim_steps_per_sample, scale_actions=scale_actions, round_actions=round_actions, environment=environment, agent=agent, interaction_env=interaction_env, log_to_file=log_to_file, )
def __getitem__(self, name: str) -> Any: return getattr(self, name) def __setitem__(self, name: str, value: Any) -> None: if not hasattr(self, name): raise KeyError(f"The key {name} does not exist - it cannot be set.") setattr(self, name, value)
[docs] @define(frozen=True, kw_only=True) class ConfigOptRun: """Configuration for an optimization run, including the series and run names descriptions and paths for the run. """ #: Name of the series of optimization runs. series: str = field(validator=validators.instance_of(str)) #: Name of an optimization run. name: str = field(validator=validators.instance_of(str)) #: Description of an optimization run. description: str = field( converter=converters.default_if_none(""), # type: ignore validator=validators.instance_of(str), ) #: Root path of the framework run. path_root: pathlib.Path = field(converter=_path_converter) #: Path to results of the optimization run. path_results: pathlib.Path = field(converter=_path_converter) #: Path to scenarios used for the optimization run. path_scenarios: pathlib.Path | None = field(default=None, converter=converters.optional(_path_converter)) #: Path for the results of the series of optimization runs. path_series_results: pathlib.Path = field(init=False, converter=_path_converter) #: Path to the model of the optimization run. path_run_model: pathlib.Path = field(init=False, converter=_path_converter) #: Path to information about the optimization run. path_run_info: pathlib.Path = field(init=False, converter=_path_converter) #: Path to the monitoring information about the optimization run. path_run_monitor: pathlib.Path = field(init=False, converter=_path_converter) #: Path to the normalization wrapper information. path_vec_normalize: pathlib.Path = field(init=False, converter=_path_converter) #: Path to the neural network architecture file. path_net_arch: pathlib.Path = field(init=False, converter=_path_converter) #: Path to the log output file. path_log_output: pathlib.Path = field(init=False, converter=_path_converter) # Information about the environments #: Version of the main environment. env_version: str | None = field( init=False, default=None, validator=validators.optional(validators.instance_of(str)) ) #: Description of the main environment. env_description: str | None = field( init=False, default=None, validator=validators.optional(validators.instance_of(str)) ) #: Version of the secondary environment (interaction_env). interaction_env_version: str | None = field( init=False, default=None, validator=validators.optional(validators.instance_of(str)) ) #: Description of the secondary environment (interaction_env). interaction_env_description: str | None = field( init=False, default=None, validator=validators.optional(validators.instance_of(str)) ) def __attrs_post_init__(self) -> None: """Add default values to the derived paths.""" object.__setattr__(self, "path_series_results", self.path_results / self.series) object.__setattr__(self, "path_run_model", self.path_series_results / f"{self.name}_model.zip") object.__setattr__(self, "path_run_info", self.path_series_results / f"{self.name}_info.json") object.__setattr__(self, "path_run_monitor", self.path_series_results / f"{self.name}_monitor.csv") object.__setattr__(self, "path_vec_normalize", self.path_series_results / "vec_normalize.pkl") object.__setattr__(self, "path_net_arch", self.path_series_results / "net_arch.txt") object.__setattr__(self, "path_log_output", self.path_series_results / f"{self.name}_log_output.log")
[docs] def create_results_folders(self) -> None: """Create the results folders for an optimization run (or check if they already exist).""" if not self.path_results.is_dir(): for p in reversed(self.path_results.parents): if not p.is_dir(): p.mkdir() log.info(f"Directory created: \n\t {p}") self.path_results.mkdir() log.info(f"Directory created: \n\t {self.path_results}") if not self.path_series_results.is_dir(): log.debug("Path for result series doesn't exist on your OS. Trying to create directories.") self.path_series_results.mkdir() log.info(f"Directory created: \n\t {self.path_series_results}")
[docs] def set_env_info(self, env: type[BaseEnv]) -> None: """Set the environment information of the optimization run to represent the given environment. The information will default to None if this is never called. :param env: The environment whose description should be used. """ version, description = env.get_info() object.__setattr__(self, "env_version", version) object.__setattr__(self, "env_description", description)
[docs] def set_interaction_env_info(self, env: type[BaseEnv]) -> None: """Set the interaction environment information of the optimization run to represent the given environment. The information will default to None if this is never called. :param env: The environment whose description should be used. """ version, description = env.get_info() object.__setattr__(self, "interaction_env_version", version) object.__setattr__(self, "interaction_env_description", description)
@property def paths(self) -> dict[str, pathlib.Path]: """Dictionary of all paths for the optimization run. This is for easier access and contains all paths as mentioned above.""" paths = { "path_root": self.path_root, "path_results": self.path_results, "path_series_results": self.path_series_results, "path_run_model": self.path_run_model, "path_run_info": self.path_run_info, "path_run_monitor": self.path_run_monitor, "path_vec_normalize": self.path_vec_normalize, "path_log_output": self.path_log_output, } if self.path_scenarios is not None: paths["path_scenarios"] = self.path_scenarios return paths